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ABSTRACT- A decentralized control framework is investigated for applicability

of formation j lying control in libration orbits. The decentralized approach, being

non-hierarchical, processes only direct measurement data, in parallel with the

other spacecraft. Control is accomplished via linearization about a reference

libration orbit with standard control using a Linear Quadratic Regulator (LQR)

or the GSFC control algorithm. Both are linearized about the current state

estimate as with the extended Kalman filter. Based on this preliminary work, the

decentralized approach appears to be feasible for upcoming libration missions

using distributed spacecraft.

1 - INTRODUCTION AND BACKGROUND

Libration orbit missions in the near future will use multiple spacecraft in a distributed approach to

perform interferometry and optical measurements not achievable by single spacecraft. We

investigate formation flying concepts in a Sun-Earth libration orbit dynamical environment for

these future missions. The Guidance, Navigation, and Control Center (GNCC) at the Goddard

Space Flight Center (GSFC) is developing and implementing enhanced autonomous formation

flying systems which improve operations while minimizing impacts to onboard software and

hardware requirements, software development, and integration ([Folt98], [Carp99], [Carp00]). In

future missions, distributed systems are expected to require a communications cross-link for sharing

housekeeping telemetry, navigation data, and measurements. In anticipation of such missions, the

GSFC GNCC is investigating an option for closed-loop autonomous navigation and maneuver

control of satellite formations that are based on the decentralized framework developed in [Spey79].

We begin by providing a brief description of libration orbit simulation, then describe GSFC

decentralized control methods useful for support of these missions. We demonstrate new

developments such as GSFC's formation control algorithm and traditional linear quadratic control

methods which are incorporated into the decentralized approach.

Problems of single spacecraft control of circular restricted three-body (CRTB) motion have been

previously investigated using state-space equations to characterize the linearized equations of

motion ([Hoff93], [Farq70], [Wie98]). State-space analysis methods in control theory provide a

useful framework for defining goals and the optimal control of satellites designed to fly about a

reference orbit. We advance formation flying control using state-space by incorporating two control

algorithms into a decentralized architecture. The mathematical foundation for the explanation of

CRTB motion is briefly addressed, but only to the degree required to understand the results of the

simulations presented. We consider the effects of third body and solar radiation perturbations into

the state space simulations and calculate command responses, including disturbance rejection, on

the formation of two spacecraft.

The decentralized approach is non-hierarchical, eliminating the need for coordination by a central

supervisor and permits graceful degradation of system perfbrmance in the presence of detected





thilures. Each spacecraft (spacecraft) in the decentralized network processes only its own

measurement data, in parallel with the other spacecraft. Although the total computational burden

over the entire network is greater than it would be tbr a single, centralized controller, fewer

computations are required locally at any individual spacecraft. Requirements tbr data transmission

between spacecraft are minimized, at the cost of locally maintaining an additional data vector. This

data vector retains a memory of all past measurement history from all of the spacecraft compressed

into a single vector with the dimension of the state.

2 - LIBRATION ORBITS

A wealth of references can be readily found on methods to derive the principle equation for the

dynamic behavior of a single spacecraft in orbit around the Sun-Earth co-linear libration point, L1.

These methods using Hamiltonian, Jacobian or Newtonian approaches start with the same initial

assumptions: an infinitely small mass is placed in the gravitational field of two massive bodies or

primary bodies. These methods are generally referred to as the restricted three-body (RTB)

problem. Furthermore, if it is assumed that the primary bodies follows a circular orbit around their

barycenter, then this is called the circular restricted three-body (CRTB) problem. An appropriate

coordinate system needs to be selected.

2.1 - A State Space Model

As with the current literature about this subject ([Hoff93] [Wie98]), we use three-dimensional

Cartesian coordinates denoted by capital letters to describe a system with an origin at the barycenter

of the primary bodies and small letters will be used for an origin at a libration point. Figure 1

illustrates the coordinate system and sample orbit that will be used here. Here m is an infinitely

small mass in the gravitational field of the primary bodies Ml and M2.
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Fig. 1: Coordinate system and sample libration orbit

The linearized equation of motion for m close to the libration point is

_-2ny=U xxx , y+2n_=Urry,and _=Uzz z (2.1)
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where u,_:v =_-_.,, Urr - OY 2 and Uzz =-_7-. " Uxx, Uyy and Uzz are calculated at the respective

librationpoint toget the respective equation of motion and are constants. As a result of the

linearization, x and y are coupled whereas z is now completely independent and is a simple

harmonic. These equations can also be written in state-space form as below where xj represents the
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stateof thejth spacecraft in the formation. This is the form that ,,,,ill be used in the t'ollowing
sections.

2.3 - Reference orbit

In order to compare our simulations using the state space matrix to a reference and to have a

reference orbit to control a spacecraft to, it is essential to find a proper reference model. The model

used generally in the literature has an oscillating tbrm. The amplitudes and phases of this reference

model depend on the initial conditions of the simulation.

x = - A x sin(coxyt + _p_.) 2 = - Axco_ _,cos(CO,yt + (p_y)

y = - Ay cos(COxvt + q0_ ) 3?= Ayco_y sin(co j + (Pxy) (2.3)

z=A: sin(co.t +%) _,=A,co: cos(co:t +%)

2.4 - Simulation: The Circular Restricted Three-Body Problem for Earth-Sun L1

To visualize the results above in graphs, a simulation is implemented with MATLAB/SIMULINK

that will calculate the motion and plot the results. To achieve more accurate results in a CRTB,

the Earth system will consist of the mass of Earth plus the mass of moon. This assumption is

generally accepted by [Sze67], [Hoff93] and [Wie98]. Using the equations above it can the be

computed that:

ML= 1.9891 x 103o kg, M2 =6.0477x 1024 kg (Mass of Sun and Moon)

Uxr=3.6262xl 043 m/s 2, Un-=-1.2185x1043 m/s 2, Uzz=-l.6149xlO "13m/s 2

C0_y= 4.1603x10 °7 rad/s= T_ = 174.8 days and _= 4.01855x10 7 rad/s = 7". = 180 days

With these values a libration orbit is propagated over five years. Figure 2 shows the result of this

simulation. The simulation error compared to the reference model if expressed as a percentage of

the absolute distance in each direction, would not exceed 0.067%. The solar radiation pressure and

the effects from the Moon and Jupiter were not included in the formation control aspect of this

paper, but should be considered in future analysis.
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Fie. 1: Libration orbit around Sun-Earth L1 without _erturbations

3 - CONTROL ALGORITHMS

The analysis presented here is based on generalizing earlier work [Hoff93] [Wie98] to the task of

distributed spacecraft at the Sun-Earth, rather than Earth-Moon, collinear equilibrium point. In

[Carp00], the decentralized LQG framework developed [Spey79] is applied to an idealized (linear,





time-invariant) version of a low Earthorbit satellite formation control problem. In this paper,the
approachtaken in [Carp00]is appliedto acentralizeddesignfor aformation of satellitesat the Sun-
EarthL1 point, which is based on the work of [Hoff93] and [Wie98]. Also, the Folta-Quinn (FQ)

orbit control algorithm of [Folt98] is substituted for the LQR control used by [Carp00], as was done

in [Carp99]. This is accomplished by treating the framework of [Spey79] as a decentralized

estimator only; globally optimal states, rather than globally optimal controls, are then reconstructed

at each spacecraft for use by the FQ algorithm.

3.1 - Centralized LQR Design

To maintain a spacecraft in orbit about L 1 a control can be introduced that provides the propulsion

system the direction and magnitude of the thrust in order for it to stay as close as possible to a

reference trajectory. One such control used by spacecraft is the Linear Quadratic Regulator (LQR).

The LQR is a control algorithm that uses state feedback to keep a system like a spacecraft to an

equilibrium condition and then holds it there despite disturbances. State feedback indicates that the
control command is directly proportional to the state. In the case of a spacecraft, the control

command would be the thrust and the state would be the position and velocity of the spacecraft

relative to the libration point. The reference orbit would define the equilibrium condition [Wie98].

The state dynamics of the controlled spacecraft are described by

i j =AJx j +B-Ju -i +a,,,rr,,,. +aF_ _ (3.1)

where the matrix/_ maps the control input from the control space to the state space. To keep the

spacecraft as close to the reference orbit, x R, as possible, and to minimize fuel usage, the

performance index

co

is minimized. To control a formation of satellites, two approaches are possible. Either each vehicle

can be individually controlled to its own reference trajectory about L1, or the spacecraft relative

positions can be controlled. In the former case, the control problem can be decoupled such that

each vehicle's optimal control is independent of the other spacecraft states and controls. Then, x

and u above represent a single spacecraft state and control _ and ft. Otherwise, x and u above

represent all the spacecraft states and controls, x = [xl; x2; ...; xK], u = [ul; u2; ...; u_]. In either

case, the solution to this problem is

u J=-[Ri]-I[BJ]TSx (3.3)

where S is the steady-state solution of the algebraic Riccati equation for time invariant problems

S( B R-I Br )S - SA - A'r S -Q=0

The solution to this equation is calculated using the MATLAB/Control Systems Toolbox function

lqr. The lqr function needs the A, B, Q, and R matrices as its input. The matrix A has been defined

previously for a single spacecraft. For multiple spacecraft, A is assumed to be equivalent for each

spacecraft as the separation distance between spacecraft for our analysis is much smaller that the

distance from either the Earth or Sun. If all the spacecraft are to be simultaneously controlled, A is

defined to include a copy of the single spacecraft A j matrix for each vehicle in the formation along

its diagonal.

The B matrix maps the control input from the control space to the state space, e.g. B determines

which states are influenced directly by the control. For the centralized controller design model it

will be assumed that the spacecraft thrusts continuously and that the thrust level can vary

continuously in time. Also, the spacecraft's control system can apply the thrust directly in each

component of the coordinate system [Wie98]. Therefore, the B matrix for an individual spacecraft is

given by





If all thespacecraftare to besimultaneouslycontrolled,B is defined to include a copy of the single

vehicle's/7/matrix for each vehicle in the formation along its diagonal.

The Q and R matrix are pertbrmance weights tbr the LQR. O is the weighting matrix for the state

error, which determines how accurate the reference is tbllowed, and R is the weighting matrix tbr

the control effort, which determines the damping of the system. In both cases trial and error and a

certain amount of experience determine the selection of Q and R. There are however some

guidelines proposed by [Wie98] on how to proceed. Let

1 [3 03x3Q_ = ,R j =1I 3

O3x3 113 r (3.5)q

The value oft determines how well the controlled system is damped. Ifp and q are selected, then r

can be used to tune the controller until it produces reasonable results. In the present case, p = 100

m 2, corresponding to a position tolerance of 10 m, and q = 0.0001 (m/s) z corresponding to a

velocity tolerance of 0.01 rn/s. If all the spacecraft are to be simultaneously controlled, Q and R are

defined to include copies of the single vehicle's Qt and R: matrices for each vehicle in the formation

along their diagonals.

3.2 - Disturbance Accommodation Model

The spacecratt thrusts continuously due to the perturbing forces and because the reference model

does not correspond with the numeric solution exactly. To save fuel it is however desirable to

decrease thrusting time. [Hoff93] and [Wie98] have similar methods to limit fuel consumption by

introducing a disturbance model. This technique was successfully used to improve the attitude

control design for the International Space Station.

The reason that the LQR design cannot keep the thrust at a lower level is that the A matrix does not

include the disturbances from the perturbations and the fact that the simulation does not equal the

reference model exactly. The real solution has additional nonlinear terms that cause the controller to

signal a higher thrust. A disturbance model can reduce the effects of these terms and reduce the
thrust. The disturbance accommodation model allows the states to have non-zero variations from

the reference in response to the perturbations without inducing additional control effort. In essence,

the additional states introduced by the disturbance model are in resonance with modes of the control

effort caused by the disturbances. As the disturbance states are stimulated, they absorb control

effort, so that in steady-state, the control effort goes to zero.

The state matrix for the disturbance model can be written as

with

6J = A 1 6 J (3.6)dL_'t

6 j , A j= [1j j,.,., =|diag(co') Qx. 0_,.
I

"cJ L °m_, Om_. 0,._.,

where _ = [ccz;...;cc_] and IT = [131;...;_,] represent n periodic disturbances with frequencies given

by a¢ = [col;...;co,,], and _ = ['el;...;'_,,] represent m constant disturbances. To completely

accommodate all disturbances the model would have to include many periodic disturbances and

integral states. This however would make the model very complex and computational expensive.

Therefore, only the most severe disturbances are included in this model.





The taskat handis to find a suitablesetof frequencies. A method that is described in [Wie98] will

be used to calculate these unknowns. Tile periodic disturbances are determined by calculating the

power spectral density of the optimal control for the motion of a spacecraft around Sun-Earth L I.

An optimal control would keep the spacecraft right on the reference orbit using the least amount of

/and i' with the reference states to calculating the optimal uj, e.g.fuel. [Hoff93] substitutes x

solving

and for Zfff

.x_ = *lax j_j+ BJu _ + a ,,ep,,,,+a_n (3.7)

BJu: 5_Rj -A:x I_j (3.8)= - a solpres -- a t.B

ffd only contains the nonlinear terms that differentiate the simulation from the reference orbit. The

power spectral density of ffff then gives the values for the frequencies of these nonlinear terms.

Here a_olm and aFB are the accelerations of solar radiation pressure and third body.

3.3 - Autonomous Navigation

The control law described above requires full state feedback, i.e. the control is a linear function of

the state vector. In practice, the state vector is not available, and instead all one has is an estimate

of its value generated by an observer. The Kalman filter is the optimal observer, and when coupled

with the LQR controller, the resulting feedback system is called a linear quadratic Gaussian, or

LQG controller.

Autonomous navigation initiatives are underway at GSFC that cover spacecraft orbits that are

beyond the regime in which use of GPS or the Tracking and Data Relay Satellite System (TDRSS)

is feasible. GSFC is assessing the feasibility of using standard satellite attitude sensors,

communication components, Doppler, crosslink systems, and GPS transceivers to provide

autonomous navigation for missions that encompass libration points, gravity assist, high-Earth, and

interplanetary orbits. The absolute and relative navigation solutions computed by the onboard

Kalman filters can then be used in the LQG control of each spacecraft in a formation.

3.4 - Decentralized LQG Design

The model may also be cast into the form of a discrete-time distributed system, in which each

satellite is assumed to locally process only its own measurements and generate its own controls, at

discrete intervals. Representing the discrete time interval by the subscript i, and the sampling time

by At, the re-cast model is:
K

x, = _/,,x,__+ }-"{A', u[ + w} (3.9)
J=l

y/ = H/x, + v/ (3.10)

Here, x, _, and w are the state, state transition matrix, and process noise for all of the spacecraft in

the formation, and

• , =_(t, +At,t,)=e A*', A'u; = _'u'(t)dt (3.11)
tl

The matrix BJ is the same as the matrix BJused previously, but augmented with zeros in the

appropriate locations so as to make it compatible with the state vector containing the states of all the

spacecraft in the formation. The process noise is used in the Kalman filter design to accommodate

model uncertainties, and y/ and v[ represent the measurements and measurement noise of the

autonomous navigation system at each satellite. The covariance of the process noise is W and the
covariance of the measurement noise is V.

A centralized solution to estimating the state for the system above would consist of the Kalman

filter. The globally optimal state estimate i for the centralized Kalman filter depends on the





measurementsfrom all of tile spacecraftill tile network. Computingi at eachspacecrafttheretbre
requiresthat all the spacecrafthaveall themeasurementinformation(from all theotherspacecraft),
which in turn requires the transmissionof large quantitiesof measurementdata. In contrast,
Speyer'sapproachminimizesthe requirementsfor datatransmission. Eachspacecraftcomputesa
globally optimal stateestimateusingonly local measurements,alongwith information statesand
datavectorsthat compressthe pastmeasurementhistory into two vectorswith thedimensionof the
state.Theapproachis baseduponadecompositionof thestatesuchthat:

i = i ° +x, _ (3.12)

where ;D depends only on the measurements (data), and x c depends only on the controls. Based on

this decomposition, the local Kalman filters are modified to process only that part of the

measurement that depends on the data-dependent part of the state:

y,' = y/-H/x c (3.13)

The control-dependent partition propagates according to:
K

x5 = _,x_, + _a' <_, (3.14)
111

with the initial condition: x,_ = x,. Then the data-dependent partition can be propagated and

updated with all the data using the state transition matrix:

D j ]_Dx, = • ,_, (3.15)

with initial condition: x_ = 0. The data dependent part of the state estimate uses only locally

available information at each spacecraft:

K) .'_,)i, _ -- _°' + ,[y,-l-Ii_, °'] (3.16)

where K[ is the locally optimal filter gain

K/= /f"/(H,]'(V')-' (3.17)

computed using local covariance I_/, based only on local data. Note that i, _ is globally sub-

optimal but locally optimal. [Spey79] shows that the globally optimal state can be reconstructed

locally, if each spacecraft transmits its information state, (_J)-'i, _ , and a data vector, hi, to all the

other spacecraft. Then, the globally optimal state estimate is given by:

±[(-)(-; ]i,_ = P, P' 17 + hi (3.18)
l-I

The data vector, which has the same dimension as the state, is maintained at each spacecraft using:

h: = FhL +G/_D' (3.19)

where:

and:

^ --j -1

Note that both local and global covariance analyses must be performed to generate f', and P/. In

some applications (e.g. those with linear time-invariant models or those with a fixed a priori

reference trajectory), the covariance analysis can be performed offline.

The globally optimal LQR control can be computed at each spacecraft by exchanging a set of

vectors _ '_ , given by

=(V)_S ,* (1; "°' + h:] (3.22)

which have the same dimension as the control, among the spacecraft. Each spacecraft transmits otv

to and receives ct jr from the other spacecraft, then computes the control according to





]{( '

Note that the intbrmation exchange need only occur when a maneuver is to be pertbrmed. If the FQ

algorithm (described below) is used, then instead the vectors h _, which have the dimension of the

state vector, must be exchanged at every measurement update epoch, and the globally optimal state
is reconstructed.

3,5 - GSFC Controller Application

The GSFC Formation Flying Algorithm, FQ [Folt98] is adaptable to generic formation flying

problems and permits full closed-loop three axis orbital maneuver autonomy onboard any

spacecraft. This algorithm, to be demonstrated on the Earth Observer-1 formation flying mission,

solves the position maintenance problem by combining the boundary value problem, initial and

target states, and Battin's 'C*' matrix formulation to construct a state transition matrix. In this

example, the goal of the algorithm is for a spacecraft to perform maneuvers which cause it to move

along a specific transfer orbit. The transfer orbit is established by determining a path which will

carry the spacecraft from some initial state, (r 0, v0), at a given time, to, to a target state, (rt, vt), at a

later time, tt. The target state found will place the spacecraft in a location relative to the control

spacecraft so as to maintain the desired formation. Back propagating the target state to find the

initial state the spacecraft would need at time to to achieve the target state at time tt without

executing a maneuver gives rise to the desired state, (rd, vd) at time t 0. The initial state can now be

differenced from the desired state to find:

(Sr)sv = ( r°-rJ)v0 va (3.24)

The original application of the FQ algorithm used a state transition matrix calculated using

universal variables and the F&G series in a two-body formulation. For the application here, we

derive the state transition matrix using the matrix exponential as shown above. That state transition

matrix is then partitioned as follows:

.. ._ .
Where the starred quantities are based upon the position/velocity partitions of q_(t0,t0, and unstarred

quantities are based on a q_(h,t0), which Battin calls the guidance matrix and navigation matrix

respectively. If a reversible Keplerian path is assumed between the two states, one should expect

the forward projection of the state from to to t_ to be related to the backward projection of the state

from tl to to. From these sub-matrices, a C* matrix is computed as follows:

C'(to) = V'(to)[R'(to)] -l (3.26)

The expression for the impulsive maneuver applied herein follows immediately:

AV = [C'(,0)]Sr0 - 8v 0 (3.27)

4 - RESULTS AND DISCUSSION

The centralized and decentralized LQ controllers were used with the simulation described above,

for a two spacecraft formation. The results are shown in Figures 3 and 4. Figure 3 depicts the

control effort in terms of velocity increments, AV. The AVs displayed are for both spacecraft which

follow their own reference orbit so that formation flying requirement can be met. While both

spacecraft initially started on their respective orbits, the formation requirement is to maintain a

separation of l km. The initial offset between the spacecraft is also approximately l km. The peak

shown during the first 200 days is a result of the Q and R matrices chosen for the LQR/LQG while

the periodic oscillations indicate that there are non-linear components and perturbations not

accounted for in the disturbance accommodation. Continuous AVs expended during the first 200

days are less than l mm/s in each velocity component.
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Fig. 3: AV to maintain libration orbit around Sun-Earth L1 without perturbations

Figure 4 shows the motion of spacecraft 2 relative to spacecraft 1, in a local coordinate system

centered on spacecraft 1. This coordinate system is similar to a radial, in-track, cross-track system,

in that it has its x-axis along the ray connecting L1 to spacecraft 1, its z-axis along the direction

given by the cross-product of the x-axis and the velocity of spacecraft 1 relative to L 1, and the y-

axis completing the triad. One can see that the control requirement of 1km was maintained during

the five-year simulation.
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Fig. 4: Motion of spacecraft-2 with respect to spacecraft-l, in local coordinates

To demonstrate the versatility of the GSFC formation flying algorithm, control of libration orbits

using initial states generated by the above state space model is investigated. The orbit selected is

shown in Figure 2. The input to the GSFC algorithm is the partitioned segments of O, the initial,

target, and desired states as described in section 3, and the time from the maneuver to the encounter

of the target state. The initial state is displaced in the L1 X direction and L1 y velocity. The only
maneuver constraint used is that the maneuver should occur immediately at the current position.

This placed the maneuver on the X-axis of the rotating L1 coordinates. To make the targeting more

complex, the target state also includes a position at various temporal displacements to show the

effects on all velocity components. The position data passed into the GSFC algorithm can also be

the information states or data from the decentralized method. Table 1 shows the AV and





infornmtion for each of the cases studied. The time interval represents the coast time from

maneuver to achieving the target position with the AV components in the L I X-axis and Y-axis

directions. A seen in the table, the immediate x-axis AV required to achieve the target goals is

proportional to the x state displacement while the y-axis AV is basically equivalent to the initial

velocity displacement.

Table 1 - AV (m/s) to Achieve Target State in L1 Rotating Coordinate Frame

[ State Offset

X= lkm, y=Irn/s

X = 10km, y = Im/s

X = 10km, y = 10m/s

5 - CONCLUSIONS

× (m/s)
y (m/s)
x (m/s)

y (m/s)
× (m/s)
y (m/s)

10 Sec
-100
0.9

60 Sec
-16
0.9

! Day 30 Day

-1000 - 17 1.2e- t -5.6e-3
1 1 I 1

- 1000 - 17 1.2e- 1 -6.0e-3
10 10 10 10

This work demonstrates the feasibility of using decentralized control methods to maintain a

formation of satellites at the Earth-Sun co-linear libration point. Integration of decentralized

control concepts within the GSFC GNCC's formation flying algorithm is a feasible technology for

autonomous orbit determination and control. As science and mission requirements for virtual

satellites and formation flying missions become more demanding, the benefit/cost trade of a

decentralized architecture versus traditional approaches becomes promising. In order to advance

this technology to the state needed to support such missions, it is essential that this innovative

technology could be demonstrated on future missions. The application of this LQR, decentralized

control (LQG), and the FQ maneuvering algorithms is unlimited and can be used to fully explore
the NASA missions outside the Earth-Moon environment.
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